If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=82
We move all terms to the left:
3x^2-(82)=0
a = 3; b = 0; c = -82;
Δ = b2-4ac
Δ = 02-4·3·(-82)
Δ = 984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{984}=\sqrt{4*246}=\sqrt{4}*\sqrt{246}=2\sqrt{246}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{246}}{2*3}=\frac{0-2\sqrt{246}}{6} =-\frac{2\sqrt{246}}{6} =-\frac{\sqrt{246}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{246}}{2*3}=\frac{0+2\sqrt{246}}{6} =\frac{2\sqrt{246}}{6} =\frac{\sqrt{246}}{3} $
| 12=3+2x+3x | | 55x-30=90 | | –10(x+13)=–10 | | 7x+10=30-3x | | 3×(x-6)=26 | | (3x-4)=(56-3x) | | -7x-16=19 | | 7x-3=-4+7x | | 61=6+5g | | a-6/5=4 | | -2n-63=47 | | x/1000*1.6=12.5 | | k^2=80 | | (3x-3)=(56-3x) | | 17/8y=2/9 | | x+5=8,x | | 2d+36=-3d-54 | | -9(y+4)=-7y-2y-9 | | -2(2t+1)=-2 | | 16÷(8+8)=h | | 7/10x+13=3/10x-13 | | 96t^2=54 | | n^2–39n=0 | | 7m-9=-30 | | -7+2k=7 | | 34x+x-5=10+2x | | 1/2(p-6)=-5 | | -m-6=15 | | 4(x+3)2−9=−29 | | 5x-355=0 | | -4(32x−12)=−15 | | 3/x+3-1/x-2=5/2x+6 |